Prediction of aromatase inhibitory activity using the efficient linear method (ELM)
نویسندگان
چکیده
Aromatase inhibition is an effective treatment strategy for breast cancer. Currently, several in silico methods have been developed for the prediction of aromatase inhibitors (AIs) using artificial neural network (ANN) or support vector machine (SVM). In spite of this, there are ample opportunities for further improvements by developing a simple and interpretable quantitative structure-activity relationship (QSAR) method. Herein, an efficient linear method (ELM) is proposed for constructing a highly predictive QSAR model containing a spontaneous feature importance estimator. Briefly, ELM is a linear-based model with optimal parameters derived from genetic algorithm. Results showed that the simple ELM method displayed robust performance with 10-fold cross-validation MCC values of 0.64 and 0.56 for steroidal and non-steroidal AIs, respectively. Comparative analyses with other machine learning methods (i.e. ANN, SVM and decision tree) were also performed. A thorough analysis of informative molecular descriptors for both steroidal and non-steroidal AIs provided insights into the mechanism of action of compounds. Our findings suggest that the shape and polarizability of compounds may govern the inhibitory activity of both steroidal and non-steroidal types whereas the terminal primary C(sp3) functional group and electronegativity may be required for non-steroidal AIs. The R code of the ELM method is available at http://dx.doi.org/10.6084/m9.figshare.1274030.
منابع مشابه
Quantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods
A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...
متن کاملThe comparison of the effect of different inhibitors on aromatase enzyme effective in the breast cancer by molecular docking method
Background: Aromatase is an enzyme that plays an important role in the development of estrogen-positive breast cancer. Estrogens are essential in human and mainly in women because of their role in sexual development and reproduction. Adverse effects of some aromatase inhibitors increase the need to discover new inhibitors with higher selectivity, lower toxicity and improved potency. In this stu...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملQSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...
متن کاملQSAR Modeling of COX-2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method
COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure–activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R2) of 0.972 and 0.531 for training and test groups, respectively. The quality of the mod...
متن کامل